1. The *work-energy theorem* states that the change in kinetic energy of a body is the work done by the net force on the body.

$$K_f - K_i = W_{ne}$$

- 2. A force is *conservative* if (i) work done by it on an object is path independent and depends only on the end points $\{x_i, x_j\}$, or (ii) the work done by the force is zero for an arbitrary closed path taken by the object such that it returns to its initial position.
- 3. For a conservative force in one dimension, we may define a *potential energy* function V(x) such that

$$F(x) = -\frac{\mathrm{d}V(x)}{\mathrm{d}x}$$

or
$$V_i - V_f = \int_{x_i}^{x_f} F(x) dx$$

- 4. The principle of conservation of mechanical energy states that the total mechanical energy of a body remains constant if the only forces that act on the body are conservative.
- 5. The *gravitational potential energy* of a particle of mass m at a height x about the earth's surface is

V(x) = m g x

where the variation of g with height is ignored.

6. The elastic potential energy of a spring of force constant k and extension x is

$$V(x) = \frac{1}{2} k x^2$$

7. The scalar or dot product of two vectors **A** and **B** is written as **A**.**B** and is a scalar quantity given by : $\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$, where θ is the angle between **A** and **B**. It can be positive, negative or zero depending upon the value of θ . The scalar product of two vectors can be interpreted as the product of magnitude of one vector and component of the other vector along the first vector. For unit vectors :

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1 \text{ and } \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$

Scalar products obey the commutative and the distributive laws.

Physical Quantity	Symbol	Dimensions	Units	Remarks
Work	W	$[ML^{2}T^{-2}]$	J	W = F.d
Kinetic energy	Κ	$[ML^2T^{-2}]$	J	$K = \frac{1}{2}mv^2$
Potential energy	V(x)	$[\mathrm{ML}^{2}\mathrm{T}^{-2}]$	J	$F(x) = -\frac{\mathrm{d}V(x)}{\mathrm{d}x}$
Mechanical energy	E	$[ML^{2}T^{-2}]$	J	E = K + V
Spring constant	k	[MT ⁻²]	N m ⁻¹	$F = -kx$ $V(x) = \frac{1}{2}kx^{2}$
Power	Р	[ML ² T ⁻³]	W	$P = \mathbf{F.v}$ $P = \frac{dW}{dt}$